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Abstract-The equation of motion in matrix form of a tapered cantilever Euler beam subjected to
a follower force at the free end is formulated based on the Lagrangian approach and the assumed
mode method. The beam is resting on a Winkler-type elastic foundation. The effects of the presence
of viscous damping in the foundation, which makes the foundation viscoelastic, and the presence
of internal damping in the beam on the critical flutter loads are examined separately to evaluate
their relative importance. As expected, internal damping of the beam tends to drastically reduce the
critical flutter loads for a beam of uniform cross-section. For tapered beams, the effects are however
dependent on the taper ratio of the beam as well as the modulus of the elastic foundation. The
critical flutter loads of both tapered beams and beams of uniform cross-section are found to be
unaffected by the presence of viscous damping in the elastic foundation. The effect of varying the
modulus of the elastic foundation on the critical flutter loads is also discussed in the paper.

1. INTRODUCTION

The dynamic stability of a rod subjected to follower forces has been studied extensively
since the early works by Bolotin (1964, 1965) and Ziegler (1968). The unstable behavior
may occur in the form of divergence or flutter as the follower forces are nonconservative
forces, A detailed discussion of this subject and a comprehensive list of references can be
found in the book by Leipholz (1980). This problem is often analyzed using numerical
methods such as the finite difference method [for example, Leipholz (1980); Guran and
Rimrott (1989); Nageswara Rao and Venkateswara Rao (1987,1988,1990); the Ritz
method (Levinson, 1966); the finite element method (Ryu and Sugiyama, 1994) and many
other forms of discretization methods (De Rosa and Franciosi, 1990; Lee et al., 1992)].

The presence of a small amount of damping has been recognized in the early studies
[for example, Bolotin and Zhinzher (1969); Herrmann and long (1965, 1966); Nemat­
Nasser (1967)] to have a strong influence on the dynamic stability of nonconservative
systems. In all the reported cases, the critical flutter loads for systems involving damping
are found to be smaller than the corresponding critical flutter loads obtained without
damping, a phenomenon described as the "destabilizing effect" of damping in a number of
studies [for example, Herrmann and long (1965); Leipholz (1980)]. Leipholz (1980)
asserted that the effects of internal damping, or Voigt-Kelvin damping, may be neglected
for systems with the smallest critical load associated with the divergence-type instability,
but must be taken into consideration for systems which become unstable in the form of
flutter.

The dynamic stability of a beam resting on an elastic foundation was first examined
by Smith and Herrmann (1972). The critical flutter loads for a beam of uniform cross­
section were found to be independent of the foundation modulus which characterizes the
Winkler-type elastic foundation. A detailed study on the stability of a beam of elastic
foundation subjected to conservative and nonconservative forces was reported by Sun­
dararajan (1974). The effects of an elastic foundation with variable foundation modulus
distribution were examined by Hauger and Vetter (1976). The dynamic stability ofa tapered
beam resting on an elastic foundation was examined by Venkateswara Rao and Kanaka
Raju (1982) using the finite element method. The critical flutter loads of tapered beams
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Fig. I. A cantilever rod on an elastic foundation subjected to a follower force.

were reported to be relatively unaffected by the variation of the dimensionless modulus of
the elastic foundation. However, the range of the variation of the dimensionless modulus
of elastic foundation from 0 to 100 reported in their work was relatively small. Lee and
Yang (1994), using the transfer matrix method, reported a large variation of the critical
flutter loads for a tapered beam resting on an elastic foundation with a large variation in
the foundation modulus. However, the effect of damping was not included in all of these
studies. The present model is related to the dynamics of a rocket or an aeroplane wing
subjected to follower forces caused by rocket thrust or jet-engines.

In the present paper, the equation of motion in matrix form of a clamped-free tapered
Euler beam subjected to a follower force applied at the free end of the rod is formulated
based on Lagrangian approach and the assumed mode method. The beam is resting on a
Winkler-type elastic foundation of uniform modulus. The nonconservative nature of the
system can be easily identified in the present matrix formulation by the presence of a non­
symmetric matrix in the equation of motion. The objective is to investigate how the presence
of a small amount of internal damping in the beam and viscous damping in the elastic
foundation will affect the critical follower force of a tapered beam.

2. THEORY AND FORMULATIONS

Figure 1 shows a clamped-free rod of length L of non-uniform cross-section, Young's
modulus E, central principle second moment of area I, cross-sectional area A, and mass m
per unit length. As the beam is assumed to be tapered, I, A and m are dependent on the
location along the beam. The rod is subjected to a follower force of magnitude P applied
at the free end of the rod. The deflection of the rod is assumed to be small for the behavior
to be governed by Euler's beam theory. A set of right-handed mutually perpendicular unit
vectors, i and j, is assumed to be fixed in the undeformed rod with the i unit vector parallel
to the undeformed neutral axis of the rod. The deflection for a point on the rod is denoted
by w(x, t) with t denoting the time and x the distance along the beam measured from the
clamped end of the beam.

For small deflection, the slope at the free end of the rod, e, indicated in Fig. I can be
approximated by ow/ax evaluated at x = L. Moreover, cose;::::: 1 and sine;::::: e. The axial
component of the follower force in the i direction, parallel to the neutral axis of the
undeformed rod, is equal to P cos e ;::::: P for small deflection, neglecting quantity of the
order of (w2

) and smaller. The transverse component in the j direction, normal to the
neutral axis of the undeformed rod, is given by Psin(ow/ox);::::: P(ow/8x) evaluated at
x = L. Therefore, the work done by the follower force can be divided into two parts. The
potential energy due to the axial component of the follower force is

__ ~fL (8W)2
Va - 2 P 8 dx.

o x
(1)
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The transverse component of the follower force is a nonconservative force and no
potential energy can be defined for this force component. The virtual work, 6 W, of this
transverse component of the follower force can be expressed as

OW
J W = - p ox(x = L, t)6w(x = L, t) (2)

where Jw(x = L, t) is the virtual transverse displacement at the free end of the rod where
the follower force is applied.

The elastic strain energy of the rod due to bending is

1 rL (02 W )2
V, = 2Jo EI ox2 dx. (3)

The elastic strain energy due to the Winkler-type elastic foundation of modulus k per
unit length is

dw
With wdefined as dt' the total kinetic energy T of the rod is

1 rL

T = 2Jo mw
2

dx.

For simplicity, the following dimensionless quantities are introduced

(4)

(5)

r = tJ EI ,
moL 4

_ PL2

P=­
Elo '

(6)

The quantities moand 10 denote respectively the values of m and 1 at the clamped end
of the beam with ( = O. The tapered beam is assumed to be a beam of rectangular cross­
section with linearly varied height and width with r1." and r1./i denoting respectively the taper
ratios of the width and the height of the cross-section. The quantities m and 1 therefore
vary as

(7)

(8)

The dimensionless w is given by

(9)

The normalized beam functions for a beam clamped at ( = 0 and free at ( = 1 are

(M() = sinf3(-sinhf3(-y(cosf3(-coshf3() (10)

where f3 are the eigenvalues that satisfy the characteristic equation for the beam vibration
with one end clamped and the other end free and
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sin f3 + sinh f3
}' = cos f3 +cosh f3 .

The resulting dimensionless equation of motion for a rod without damping is

M(j+(K+kH-P(A-fi»q = O.

The matrices in the above equation are defined as

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The matrix H is an identity matrix I due to the orthogonality of the assumed functions.
The functions 1J; and 1J;' denote the first and second derivatives of 1Ji with respect to ~. The
vectors q and qare n x 1 column vectors. All the matrices except lJ are symmetric matrices.
The nonsymmetric matrix fi in the above equation of motion makes the system non­
conservative.

In the presence of internal damping or Voigt-Kelvin damping, an additional term I]Kq
(Leipholz, 1980) can be included in the equation of motion where I] is the damping factor.
The resulting equation of motion for a rod with internal damping is

(18)

If the elastic foundation is viscoelastic with dimensionless viscous damping coefficient
c, instead of the term I]Kq, the term to be added in the equation of motion is cHq. The
resulting equation of motion for a rod resting on a viscoelastic foundation is therefore
given by

with

M(j+cHq+(K+kH-P(A-fi»q = O.

The equations of motion can be rearranged in the following form

z = Hz

(19)

(20)

(21)

-(K+kIt-
O

peA-fin]
for internal damping (22)
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(23)

The corresponding characteristic equation is given by

det IB-wII = 0 (24)

where ware the complex eigenvalues of the real asymmetric matrix B. The stability of the
rod is determined by the sign of the real part of w. A positive real part indicates that the
motion is unstable.

It should be pointed out that as discussed in Lee (1994), the assumed functions for w
for the present assumed mode method need not satisfy the natural boundary conditions at
the free end of the rod. These natural boundary conditions at the free end should be
(Kounadis, 1983)

(25)

(26)

The second boundary condition regarding the transverse shear force was erroneously
written as 03 w/ox3 = 0 in a number of reported works [for example, Smith and Herrmann
(1972); Venkateswara Rao and Kanaka Raju (1982); Elishakoffand Lottati (1988), Guran
and Rimrott (1989)].

3. NUMERICAL RESULTS AND DISCUSSION

The convergence of the critical loads in terms of the number of terms for w is first
examined. Although the convergence is not uniform, as pointed out by Leipholz (1980) for
Galerkin's method, it is found that the first critical flutter loads for all the cases under
consideration are almost converged for n = 5. The computations of the eigenvalues are
relatively straightforward and fast with the use of PCMatlab on a personal computer. The
only time consuming part of the computation is the derivation of the matrices M and K by
numerical integrations. The matrices M and K are first expanded into components pre­
multiplied by factors involving rtb and rth before performing the numerical integration for
each component. The matrices M and Kfor various combinations of rtb and rth can then
be computed easily by simple additions and multiplications without further numerical
integrations.

The load-frequency diagrams for various combinations of damping and modulus of
elastic foundation for a beam of uniform cross-section are shown in Fig. 2. As the eigen­
values are in general complex in the presence of damping, the load-frequency curves are
presented with the horizontal axis in terms of the product terms of ww* which is always a
positive real value. The divergence instability can be easily identified in these diagrams by
the intersection of the curve and the vertical axis with ww* = O. If the imaginary part of w
as presented in all the other reported studies is used in place of ww* in these diagrams, the
divergence behavior could not be identified without also examining the real part of w for
general cases in the presence of damping. In the absence of damping, the critical flutter load
can be determined easily from the apex of the dome-shape structures, which corresponds to
the coalescence of the eigenvalues at that point. In the presence of damping, the critical
flutter load can be determined by examining the real part of the eigenvalues.

There are five sets of curves presented in each subplot of Fig. 2. The curve appearing
on the extreme left side of each subplot is the load-frequency diagram for k = 1000. With
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Fig. 2. The load-frequency curves for a cantilever rod of uniform cross-section subjected to a
follower force on an elastic foundation with k varying between 1000 and 20,000. (a) No damping;

(b) internal damping with '1 = 0.001; (c) viscous damping with c = 0.1.

increased modulus of the elastic foundation, the curves are found to be shifted to the right
with increased magnitude of w. The remaining four sets of curves presented in each subplot
are for k = 5000, 10,000, 15,000 and 20,000 respectively. For a beam of uniform cross­
section without damping with the numerical results presented in Fig. 2(a), it can be seen
that the critical flutter load, corresponding to the apex of the dome-shape structure for
each curve, is insensitive to variation in the modulus of the elastic foundation. This finding
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is in agreement with the reported findings by Smith and Herrmann (1972) and Lee and
Yang (1994). The load-frequency diagrams for a beam of uniform cross-section with
internal damping in the beam and viscous damping in the elastic foundation are shown
respectively in Figs 2(b,c). It can be seen from Fig. 2(b) that the dome-shape structure
disappears with the presence of small amount of internal damping with 1J = 0.001. The
critical flutter load cannot be determined from the load-frequency diagram. However, for
a beam resting on a viscoelastic foundation with c = 0.1, the load-frequency diagrams
remain almost unchanged compared with the curves presented in Fig. 2(a). The real parts
of the eigenvalues for the curves shown in Fig. 2 are presented in Fig. 3. It can be seen from
Fig. 3(a) that the curves are almost coincident. The real part of the eigenvalues become
positive at the critical flutter load which appears to be insensitive to the variation in the
modulus of the elastic foundation, confirming the numerical results shown in Fig. 2(a). The
critical flutter load also remains independent of the variation of the modulus of elastic
foundation for a beam with viscous damping [see Fig. 3(c)]. Moreover, the critical flutter
load for a beam resting on a viscoelastic foundation with c = 0.1 is almost the same as the
critical flutter load for a beam resting on an elastic foundation without damping. Cases for
other reasonable values of c for the range between 0 and 0.2 have also been examined and
the finding remains valid. However, in the presence of small amounts of internal damping
with 1J = 0.001, the curves that appear in Fig. 3(b) are found to begin from the negative
region, not shown in the diagram, intersecting the vertical line and entering the positive
region at a critical value of P very much smaller than the critical flutter load for the beam
without damping. With increased amounts of internal damping (numerical results are not
shown), the points of intersection of these curves with the vertical axis are found to remain
almost unaffected by the increase in damping factor. The rapid growing of the real part of
w with increased value of P only begins when the real part of w is positive, consistent with
the reported finding by Bolotin and Zhinzher (1969). The presence of small amounts of
damping has therefore resulted in a sharp reduction of the critical flutter load, a phenom­
enon known as the "destabilizing effect" of damping in a number of reported studies.

The load-frequency diagrams for a tapered beam with constant height (C(h = 0) and
uniformly tapered width are shown in Fig. 4 for the case without damping. Once again, the
five sets of curves presented in each subplot are for k = 1000, 5000, 10,000, 15,000 and
20,000 respectively with the extreme left curve corresponding to the case of k = 1000. The
taper ratio C(b for the curves presented in Figs 3(a,b,c) are respectively 0.05, 0.2 and 0.5.
Unlike the numerical results for a beam with uniform cross-section, the critical flutter load
for a tapered beam is found to be dependent on the modulus of the elastic foundation. In
general, the critical flutter load is found to increase with increased modulus of the elastic
foundation although the rate of increase is dependent on the taper ratio. For example, the
rate of increase of the critical flutter load with increased k is relatively small for k smaller
than 5000 and for k larger than 10,000 for the case shown in Fig. 4(a) with C(b = 0.05. There
is a sharp increase in the critical flutter load when k is varied from 5000 to 10,000, consistent
with the numerical results presented by Lee and Yang (1994). The reported finding by
Venkateswara Rao and Kanaka Raju (1982) that the critical flutter load is relatively
insensitive to variation of k is mainly due to the narrow range of variation of k from 1 to
100 in their reported study. The real parts of w for the curves shown in Fig. 4 are presented
in Fig. 5. It can be seen that the real part becomes positive and increases rapidly when the
follower force reaches the respective critical flutter load for each case.

The effect of the presence of a small amount of internal damping 1J = 0.001 on the
cases shown in Fig. 4 is examined in Fig. 6. It can be seen from Fig. 6 that the presence of
internal damping destroys the dome-shape structure in these load-frequency diagrams and
makes the determination of the critical flutter loads impossible without examining the real
part of the eigenvalues which are shown in Fig. 7. It can be seen from these diagrams that
the effect of internal damping is dependent on both the taper ratio C(b and the modulus of
elastic foundation k. For the curves shown in Fig. 7(a) with C(b = 0.05 and comparing with
the corresponding curves shown in Fig. 5(a), the presence of internal damping is found to
drastically reduce the critical flutter load only for the case of k = 1000. The critical flutter
loads for the remaining four cases with larger values of k remain relatively unaffected by
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Fig. 3. The real part of OJ for the load-frequency curves presented in Fig. 2. (a) No damping;
(b) internal damping with" = 0.001 ; (c) viscous damping with c = 0.1.

the presence ofinternal damping. However, for the curves shown in Fig. 7(b) with rt.b = 0.2,
the presence of internal damping does not affect the case of k = 1000 but does reduce the
critical flutter loads for the remaining four cases. For the curves shown in Fig. 7(c), the
presence of internal damping does not affect the cases with k = 1000 and 5000, but increases
the critical flutter loads for the remaining three cases. It can therefore be concluded that
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Fig. 4. The load-frequency curves for a tapered cantilever rod (lIh = 0) subjected to a follower force
on an elastic foundation with Ii varying between 1000 and 20,000. (a) IIh = 0.05; (b) IIh = 0.2;

(c) IIh = 0.5.

the effect of internal damping is dependent on both the taper ratio of the beam as well as
the modulus of the elastic foundation.

The load frequency diagrams for a tapered beam with constant width (Clb = 0) and
uniformly tapered height are shown in Fig. 8 for the case without damping and in Fig. 9
for the case with the presence of small amount of internal damping. The curves presented



1418 H. P. Lee

(a)
70

60

50

40

30

20

10

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(b)
140

120

100

P
80

60

40

20

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(c)
180

160

140
--

120

100

80

60

40

20

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Re w

Fig. 5. The real part of w for the load-frequency curves presented in Fig. 4. (a) IXb = 0.05;
(b) IXb = 0.2; (c) IXb = 0.5.

in Fig. 8 show that the critical flutter loads are in general larger with larger modulus of
elastic foundation. The rate of increase with increased k is once again dependent on the
taper ratio of the beam. The real parts of the curves shown in Fig. 9 are presented in Fig.
10 to determine the critical flutter loads for the case with the presence of internal damping.
The effect of internal damping is once again dependent on the taper ratio as well as the
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Fig. 6. The load-frequency curves for a tapered cantilever rod (ab = 0) subjected to a follower force
on an elastic foundation with k varying between 1000 and 20,000. 1'/ = 0.001. (a) ab = 0.05;

(b) ab = 0.2; (c) ab = 0.5.

modulus of elastic foundation. For the curves shown in Fig. 1O(a) with ah = 0.05, the
presence of internal damping is found to drastically reduce the critical flutter load only for
the case of k = 1000 [comparing with Fig. 8(a)]. The critical flutter loads for the remain­
ing four cases with larger values of k remain relatively unaffected by the presence of
internal damping. For the curves shown in Fig. 10(b) with ah = 0.2, the presence of internal
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Fig. 7. The real part of w for the load-frequency curves presented in Fig. 6. J1 = 0.001. (al ex. = 0.05;
(bl exb = 0.2; (C)'Y.b = 0.5.

damping does not affect the case of k = 1000, 5000 and 10,000 but does increase the
critical flutter loads for the remaining two cases. Similarly, for the curves shown in
Fig. lO(c) with rxh = 0.5, the presence of internal damping does not affect the case of
k = 1000, 5000, and 10,000 but does increase the critical flutter loads for the remaining
two cases.
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Fig. 8. The load-frequency curves for a tapered cantilever rod (ah = 0) subjected to a follower force
on an elastic foundation with k varying between 1000 and 20,000. (a) an = 0.05; (b) an = 0.2;

(c) an = 0.5.

The load-frequency diagrams for a tapered beam resting on a viscoelastic foundation
with c in the reasonable range between 0 and 0.2 are found to be the same as the cor­
responding frequency diagrams for a tapered beam resting on an elastic foundation without
damping. The presence of viscous damping in the elastic foundation therefore does not
affect the critical flutter loads.
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Fig. 9. The load-frequency curves for a tapered cantilever rod (otb = 0) subjected to a follower force
on an elastic foundation with k varying between 1000 and 20,000; tI = 0.001. (a) oth = 0.05;

(b) exh = 0.2; (c) exh = 0.5.

4. CONCLUSION

For a beam of uniform cross-section resting on an elastic foundation subjected to a
tip-concentrated follower force, the numerical studies show that:

1. The critical flutter loads are insensitive to variation in the modulus of the elastic
foundation in the presence or absence of damping.
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Fig. 10. The real part ofw for the load-frequency curves presented in Fig. 9; Ij = 0.001. (a) ct." = 0.05;
(b) ct." = 0.2; (c) ct." = 0.5.

2. The critical flutter loads are insensitive to the presence of viscous damping.
3. The critical flutter loads are drastically reduced by the presence of small amounts

of internal damping.

For a uniformly tapered beam resting on an elastic foundation subjected to a tip­
concentrated follower force, the numerical studies show that:
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1. The critical flutter loads are not affected by the presence of viscous damping in the
elastic foundation.

2. The presence of small amounts of internal damping in the beam may reduce,
increase, or may not affect the critical flutter load depending on the taper ratio as
well as the modulus of the elastic foundation.
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